Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130.296
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14516, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618710

RESUMO

Ovarian cancer is the most deadly female gynaecological malignancy in developed countries and new treatments are urgently needed. The luteinising hormone releasing hormone (LHRH) peptide drug conjugate Zoptarelin doxorubicin is one such potential new drug modality that entered clinical trials for treating LHRH receptor-positive gynaecological cancers. However, development stopped after disappointing Phase 3 results in 2017. We believe the lack of efficacy was due to linker instability and payload potency. In this work, we replaced its linker-toxin with vedotin (MC-VC-PABC-MMAE), yielding the novel peptide drug conjugate D-Cys6-LHRH vedotin. A GI50 and cell specificity comparison against cancerous and non-cancerous ovarian cell lines showed significantly superior bioactivity and selectivity over Zoptarelin doxorubicin (GI50 4 vs. 453 nM) and other chemotherapeutic drugs used for treating ovarian cancers. Our results suggest D-Cys6-LHRH vedotin can potentially be used as a treatment for ovarian cancer.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Feminino , Humanos , Hormônio Liberador de Gonadotropina/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Antineoplásicos/farmacologia , Linhagem Celular
2.
Cell Death Dis ; 15(4): 266, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622118

RESUMO

BH3-mimetics represent promising anti-cancer agents in tumors that rely on the anti-apoptotic function of B-Cell Lymphoma 2 (BCL2) proteins, particularly in leukemia and lymphoma cells primed for apoptosis. Mechanistically, BH3-mimetics may displace pro-apoptotic binding partners thus inducing BAX/BAK-mediated mitochondrial permeabilization followed by cytochrome c release, activation of the caspase cascade and apoptosis. Here, we describe a novel mode of caspase-independent cell death (CICD) induced by BH3-mimetics in a subset of diffuse large B-cell lymphoma (DLBCL) cells. Of note, rather than occurring via necroptosis, CICD induced immediately after mitochondrial permeabilization was associated with transcriptional reprogramming mediated by activation of c-Jun N-terminal Kinase (JNK) signaling and Activator Protein 1 (AP1). Thereby, CICD resulted in the JNK/AP1-mediated upregulation of inflammatory chemokines and increased migration of cytotoxic Natural Killer (NK) cells. Taken together, our study describes a novel mode of CICD triggered by BH3-mimetics that may alter the immune response towards dying cells.


Assuntos
Antineoplásicos , Linfoma Difuso de Grandes Células B , Humanos , Proteína X Associada a bcl-2/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Apoptose , Antineoplásicos/farmacologia , Caspases , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linhagem Celular , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
3.
J Nanobiotechnology ; 22(1): 184, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622644

RESUMO

Despite the advent of numerous targeted therapies in clinical practice, anthracyclines, including doxorubicin (DOX), continue to play a pivotal role in breast cancer (BC) treatment. DOX directly disrupts DNA replication, demonstrating remarkable efficacy against BC cells. However, its non-specificity toward cancer cells leads to significant side effects, limiting its clinical utility. Interestingly, DOX can also enhance the antitumor immune response by promoting immunogenic cell death in BC cells, thereby facilitating the presentation of tumor antigens to the adaptive immune system. However, the generation of an adaptive immune response involves highly proliferative processes, which may be adversely affected by DOX-induced cytotoxicity. Therefore, understanding the impact of DOX on dividing T cells becomes crucial, to deepen our understanding and potentially devise strategies to shield anti-tumor immunity from DOX-induced toxicity. Our investigation focused on studying DOX uptake and its effects on human lymphocytes. We collected lymphocytes from healthy donors and BC patients undergoing neoadjuvant chemotherapy (NAC). Notably, patient-derived peripheral blood mononuclear cells (PBMC) promptly internalized DOX when incubated in vitro or isolated immediately after NAC. These DOX-treated PBMCs exhibited significant proliferative impairment compared to untreated cells or those isolated before treatment initiation. Intriguingly, among diverse lymphocyte sub-populations, CD8 + T cells exhibited the highest uptake of DOX. To address this concern, we explored a novel DOX formulation encapsulated in ferritin nanocages (FerOX). FerOX specifically targets tumors and effectively eradicates BC both in vitro and in vivo. Remarkably, only T cells treated with FerOX exhibited reduced DOX internalization, potentially minimizing cytotoxic effects on adaptive immunity.Our findings underscore the importance of optimizing DOX delivery to enhance its antitumor efficacy while minimizing adverse effects, highlighting the pivotal role played by FerOX in mitigating DOX-induced toxicity towards T-cells, thereby positioning it as a promising DOX formulation. This study contributes valuable insights to modern cancer therapy and immunomodulation.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Leucócitos Mononucleares , Terapia Neoadjuvante , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antineoplásicos/farmacologia , Linhagem Celular Tumoral
4.
Cell Commun Signal ; 22(1): 228, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622735

RESUMO

Cancer is a major public health problem worldwide with more than an estimated 19.3 million new cases in 2020. The occurrence rises dramatically with age, and the overall risk accumulation is combined with the tendency for cellular repair mechanisms to be less effective in older individuals. Conventional cancer treatments, such as radiotherapy, surgery, and chemotherapy, have been used for decades to combat cancer. However, the emergence of novel fields of cancer research has led to the exploration of innovative treatment approaches focused on immunotherapy, epigenetic therapy, targeted therapy, multi-omics, and also multi-target therapy. The hypothesis was based on that drugs designed to act against individual targets cannot usually battle multigenic diseases like cancer. Multi-target therapies, either in combination or sequential order, have been recommended to combat acquired and intrinsic resistance to anti-cancer treatments. Several studies focused on multi-targeting treatments due to their advantages include; overcoming clonal heterogeneity, lower risk of multi-drug resistance (MDR), decreased drug toxicity, and thereby lower side effects. In this study, we'll discuss about multi-target drugs, their benefits in improving cancer treatments, and recent advances in the field of multi-targeted drugs. Also, we will study the research that performed clinical trials using multi-target therapeutic agents for cancer treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Idoso , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos
5.
Oncoimmunology ; 13(1): 2338558, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623463

RESUMO

T cell-based immunotherapies for solid tumors have not achieved the clinical success observed in hematological malignancies, partially due to the immunosuppressive effect promoted by the tumor microenvironment, where PD-L1 and TGF-ß play a pivotal role. However, durable responses to immune checkpoint inhibitors remain limited to a minority of patients, while TGF-ß inhibitors have not reached the market yet. Here, we describe a bispecific antibody for dual blockade of PD-L1 and TFG-ß, termed AxF (scFv)2, under the premise that combination with T cell redirecting strategies would improve clinical benefit. The AxF (scFv)2 antibody was well expressed in mammalian and yeast cells, bound both targets and inhibited dose-dependently the corresponding signaling pathways in luminescence-based cellular reporter systems. Moreover, combined treatment with trispecific T-cell engagers (TriTE) or CAR-T cells significantly boosted T cell activation status and cytotoxic response in breast, lung and colorectal (CRC) cancer models. Importantly, the combination of an EpCAMxCD3×EGFR TriTE with the AxF (scFv)2 delayed CRC tumor growth in vivo and significantly enhanced survival compared to monotherapy with the trispecific antibody. In summary, we demonstrated the feasibility of concomitant blockade of PD-L1 and TGF-ß by a single molecule, as well as its therapeutic potential in combination with different T cell redirecting agents to overcome tumor microenvironment-mediated immunosuppression.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias Colorretais , Animais , Humanos , Linfócitos T , Fator de Crescimento Transformador beta , Antígeno B7-H1 , Antineoplásicos/farmacologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Mamíferos , Microambiente Tumoral
6.
Curr Drug Discov Technol ; 21(1): e101023222024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629172

RESUMO

BACKGROUND: VEGFR-2 tyrosine kinase inhibitors are receiving a lot of attention as prospective anticancer medications in the current drug discovery process. OBJECTIVE: This work aims to explore the PubChem library for novel VEGFR-2 kinase inhibitors. 1H-Indazole-containing drug AXITINIB, or AG-013736 (FDA approved), is chosen as a rational molecule for drug design. This scaffold proved its efficiency in treating cancer and other diseases as well. METHODS: The present study used the virtual screening of the database, protein preparation, grid creation, and molecular docking analyses. RESULTS: The protein was validated on different parameters like the Ramachandran plot, the ERRAT score, and the ProSA score. The Ramachandran plot revealed that 92.1% of the amino acid residues were located in the most favorable region; this was complemented by an ERRAT score (overall quality factor) of 96.24 percent and a ProSA (Z score) of -9.24 percent. The Lipinski rule of five was used as an additional filter for screening molecules. The docking results showed values of binding affinity between -14.08 and -12.34 kcal/mol. The molecule C1 showed the highest docking value of -14.08 Kcal/mol with the maximum number of strong H-bonds by -NH of pyridine to amino acid Cys104 (4.22Å), -NH of indazole to Glu108 (4.72), and Glu70 to bridge H of -NH. These interactions are similar to Axitinib docking interactions like Glu70, Cys104, and Glu102. The docking studies revealed that pi-alkyl bonds are formed with unsubstituted pyridine, whereas important H-bonds are observed with different substitutions around -NH. Based on potential findings, we designed new molecules, and molecular docking studies were performed on the same protein along with ADMET studies. The designed molecules (M1-M4) also showed comparable docking results similar to Axitinib, along with a synthetic accessibility score of less than 4.5. CONCLUSION: The docking method employed in this work opens up new possibilities for the design and synthesis of novel compounds that can act as VEGFR-2 tyrosine kinase inhibitors and treat cancer.


Assuntos
Antineoplásicos , Fator A de Crescimento do Endotélio Vascular , Axitinibe , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Estudos Prospectivos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Aminoácidos , Piridinas
7.
Proc Natl Acad Sci U S A ; 121(15): e2321116121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557176

RESUMO

Multidrug resistance (MDR) is a major factor in the failure of many forms of tumor chemotherapy. Development of a specific ligand for MDR-reversal would enhance the intracellular accumulation of therapeutic agents and effectively improve the tumor treatments. Here, an aptamer was screened against a doxorubicin (DOX)-resistant human hepatocellular carcinoma cell line (HepG2/DOX) via cell-based systematic evolution of ligands by exponential enrichment. A 50 nt truncated sequence termed d3 was obtained with high affinity and specificity for HepG2/DOX cells. Multidrug resistance protein 1 (MDR1) is determined to be a possible recognition target of the selected aptamer. Aptamer d3 binding was revealed to block the MDR of the tumor cells and increase the accumulation of intracellular anticancer drugs, including DOX, vincristine, and paclitaxel, which led to a boost to the cell killing of the anticancer drugs and lowering their survival of the tumor cells. The aptamer d3-mediated MDR-reversal for effective chemotherapy was further verified in an in vivo animal model, and combination of aptamer d3 with DOX significantly improved the suppression of tumor growth by treating a xenograft HepG2/DOX tumor in vivo. This work demonstrates the feasibility of a therapeutic DNA aptamer as a tumor MDR-reversal agent, and combination of the selected aptamer with chemotherapeutic drugs shows great potential for liver cancer treatments.


Assuntos
Antineoplásicos , Resistencia a Medicamentos Antineoplásicos , Animais , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Quimioterapia Combinada , Linhagem Celular Tumoral
8.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38612902

RESUMO

Many tumors have well-defined vulnerabilities, thus potentially allowing highly specific and effective treatment. There is a spectrum of actionable genetic alterations which are shared across various tumor types and, therefore, can be targeted by a given drug irrespective of tumor histology. Several agnostic drug-target matches have already been approved for clinical use, e.g., immune therapy for tumors with microsatellite instability (MSI) and/or high tumor mutation burden (TMB), NTRK1-3 and RET inhibitors for cancers carrying rearrangements in these kinases, and dabrafenib plus trametinib for BRAF V600E mutated malignancies. Multiple lines of evidence suggest that this histology-independent approach is also reasonable for tumors carrying ALK and ROS1 translocations, biallelic BRCA1/2 inactivation and/or homologous recombination deficiency (HRD), strong HER2 amplification/overexpression coupled with the absence of other MAPK pathway-activating mutations, etc. On the other hand, some well-known targets are not agnostic: for example, PD-L1 expression is predictive for the efficacy of PD-L1/PD1 inhibitors only in some but not all cancer types. Unfortunately, the individual probability of finding a druggable target in a given tumor is relatively low, even with the use of comprehensive next-generation sequencing (NGS) assays. Nevertheless, the rapidly growing utilization of NGS will significantly increase the number of patients with highly unusual or exceptionally rare tumor-target combinations. Clinical trials may provide only a framework for treatment attitudes, while the decisions for individual patients usually require case-by-case consideration of the probability of deriving benefit from agnostic versus standard therapy, drug availability, associated costs, and other circumstances. The existing format of data dissemination may not be optimal for agnostic cancer medicine, as conventional scientific journals are understandably biased towards the publication of positive findings and usually discourage the submission of case reports. Despite all the limitations and concerns, histology-independent drug-target matching is certainly feasible and, therefore, will be increasingly utilized in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antígeno B7-H1 , Proteína BRCA1 , Proteínas Tirosina Quinases , Proteína BRCA2 , Proteínas Proto-Oncogênicas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética
9.
J Immunother Cancer ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38604809

RESUMO

BACKGROUND: Combining cytotoxic chemotherapy or novel anticancer drugs with T-cell modulators holds great promise in treating advanced cancers. However, the response varies depending on the tumor immune microenvironment (TIME). Therefore, there is a clear need for pharmacologically tractable models of the TIME to dissect its influence on mono- and combination treatment response at the individual level. METHODS: Here we establish a patient-derived explant culture (PDEC) model of breast cancer, which retains the immune contexture of the primary tumor, recapitulating cytokine profiles and CD8+T cell cytotoxic activity. RESULTS: We explored the immunomodulatory action of a synthetic lethal BCL2 inhibitor venetoclax+metformin drug combination ex vivo, discovering metformin cannot overcome the lymphocyte-depleting action of venetoclax. Instead, metformin promotes dendritic cell maturation through inhibition of mitochondrial complex I, increasing their capacity to co-stimulate CD4+T cells and thus facilitating antitumor immunity. CONCLUSIONS: Our results establish PDECs as a feasible model to identify immunomodulatory functions of anticancer drugs in the context of patient-specific TIME.


Assuntos
Antineoplásicos , Neoplasias da Mama , Compostos Bicíclicos Heterocíclicos com Pontes , Metformina , Sulfonamidas , Humanos , Feminino , Complexo I de Transporte de Elétrons/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Dendríticas , Metformina/farmacologia , Metformina/uso terapêutico , Microambiente Tumoral
10.
Cell Death Dis ; 15(3): 199, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38604999

RESUMO

Epidermal growth factor receptor (EGFR)-targeted drugs (erlotinib, etc.) are used to treat multiple types of tumours. EGFR is highly expressed in most triple-negative breast cancer (TNBC) patients. However, only a small proportion of TNBC patients benefit from EGFR-targeted drugs in clinical trials, and the resistance mechanism is unclear. Here, we found that PDZ domain containing 1 (PDZK1) is downregulated in erlotinib-resistant TNBC cells, suggesting that PDZK1 downregulation is related to erlotinib resistance in TNBC. PDZK1 binds to EGFR. Through this interaction, PDZK1 promotes EGFR degradation by enhancing the binding of EGFR to c-Cbl and inhibits EGFR phosphorylation by hindering EGFR dimerisation. We also found that PDZK1 is specifically downregulated in TNBC tissues and correlated with a poor prognosis in TNBC patients. In vitro and in vivo functional assays showed that PDZK1 suppressed TNBC development. Restoration of EGFR expression or kinase inhibitor treatment reversed the degree of cell malignancy induced by PDZK1 overexpression or knockdown, respectively. PDZK1 overexpression sensitised TNBC cells to erlotinib both in vitro and in vivo. In conclusion, PDZK1 is a significant prognostic factor for TNBC and a potential molecular therapeutic target for reversing erlotinib resistance in TNBC cells.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Receptores ErbB/metabolismo , Antineoplásicos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Membrana/uso terapêutico
11.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607071

RESUMO

Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.


Assuntos
Amidas , Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Glioblastoma , Pirimidinas , Sulfonamidas , Animais , Camundongos , Temozolomida/farmacologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Citarabina/farmacologia , Citarabina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose
12.
J Am Chem Soc ; 146(15): 10753-10766, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38578841

RESUMO

Proteolysis targeting chimera (PROTAC) technology is an innovative strategy for cancer therapy, which, however, suffers from poor targeting delivery and limited capability for protein of interest (POI) degradation. Here, we report a strategy for the in situ formulation of antineoplastic Supra-PROTACs via intracellular sulfatase-responsive assembly of peptides. Coassembling a sulfated peptide with two ligands binding to ubiquitin VHL and Bcl-xL leads to the formation of a pro-Supra-PROTAC, in which the ratio of the two ligands is rationally optimized based on their protein binding affinity. The resulting pro-Supra-PROTAC precisely undergoes enzyme-responsive assembly into nanofibrous Supra-PROTACs in cancer cells overexpressing sulfatase. Mechanistic studies reveal that the pro-Supra-PROTACs selectively cause apparent cytotoxicity to cancer cells through the degradation of Bcl-xL and the activation of caspase-dependent apoptosis, during which the rationally optimized ligand ratio improves the bioactivity for POI degradation and cell death. In vivo studies show that in situ formulation enhanced the tumor accumulation and retention of the pro-Supra-PROTACs, as well as the capability for inhibiting tumor growth with excellent biosafety when coadministrating with chemodrugs. Our findings provide a new approach for enzyme-regulated assembly of peptides in living cells and the development of PROTACs with high targeting delivering and POI degradation efficiency.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Quimera de Direcionamento de Proteólise , Antineoplásicos/farmacologia , Sulfatases , Proteólise , Peptídeos , Ubiquitina-Proteína Ligases
13.
Methods Mol Biol ; 2797: 1-12, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570448

RESUMO

RAS research has entered the world of translational and clinical science. Progress has been based on our appreciation of the role of RAS mutations in different types of cancer and the effects of these mutations on the biochemical, structural, and biophysical properties of the RAS proteins themselves, particularly KRAS, on which most attention has been focused. This knowledge base, while still growing, has enabled creative chemical approaches to targeting KRAS directly. Our understanding of RAS signaling pathways in normal and cancer cells plays an important role for developing RAS inhibitors but also continues to reveal new approaches to targeting RAS through disruption of signaling complexes and downstream pathways.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Mutação , Neoplasias/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia
14.
Methods Mol Biol ; 2797: 271-285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38570467

RESUMO

With recent advances proving that effective inhibition of KRAS is possible, there have been significant efforts made to develop inhibitors of specific mutant alleles. Here we describe a detailed protocol that employs homogeneous time-resolved fluorescence (HTRF) to identify compounds acting on KRAS signaling in malignant cell lines. This method allows for high-throughput, cell-based screens of large compound libraries for the development of RAS-targeted therapeutics.


Assuntos
Antineoplásicos , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Antineoplásicos/farmacologia , Linhagem Celular , Transdução de Sinais , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral
15.
Drug Dev Res ; 85(2): e22175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38567708

RESUMO

Icaritin is a natural prenylated flavonoid derived from the Chinese herb Epimedium. The compound has shown antitumor effects in various cancers, especially hepatocellular carcinoma (HCC). Icaritin exerts its anticancer activity by modulating multiple signaling pathways, such as IL-6/JAK/STAT3, ER-α36, and NF-κB, affecting the tumor microenvironment and immune system. Several clinical trials have evaluated the safety and efficacy of icaritin in advanced HCC patients with poor prognoses, who are unsuitable for conventional therapies. The results have demonstrated that icaritin can improve survival, delay progression, and produce clinical benefits in these patients, with a favorable safety profile and minimal adverse events. Moreover, icaritin can enhance the antitumor immune response by regulating the function and phenotype of various immune cells, such as CD8+ T cells, MDSCs, neutrophils, and macrophages. These findings suggest that icaritin is a promising candidate for immunotherapy in HCC and other cancers. However, further studies are needed to elucidate the molecular mechanisms and optimal dosing regimens of icaritin and its potential synergistic effects with other agents. Therefore, this comprehensive review of the scientific literature aims to summarize advances in the knowledge of icaritin in preclinical and clinical studies as well as the pharmacokinetic, metabolism, toxicity, and mechanisms action to recognize the main challenge, gaps, and opportunities to develop a medication that cancer patients can use. Thus, our main objective was to clarify the current state of icaritin for use as an anticancer drug.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Sci Rep ; 14(1): 7654, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561419

RESUMO

Epidermal growth factor receptor (EGFR) exon 19 deletion is a major driver for the drug resistance of non-small cell lung cancer (NSCLC). Identification small inhibitor capable of selectively inhibiting EGFR-19del NSCLC is a desirable strategy to overcome drug resistance in NSCLC. This study aims to screen an inhibitor for EGFR exon 19 deletion cells and explore its underlying mechanism. High through-put screen was conducted to identify an inhibitor for EGFR-19del NSCLC cells. And tenovin-3 was identified as a selective inhibitor of PC9 cells, an EGFR-19del NSCLC cells. Tenovin-3 showed particular inhibition effect on PC9 cells proliferation through inducing apoptosis and ferroptosis. Mechanistically, tenovin-3 might induce the apoptosis and ferroptosis of PC9 cells through mitochondrial pathway, as indicated by the change of VDAC1 and cytochrome c (cyt c). And bioinformatics analyses showed that the expression levels of SLC7A11 and CPX4 were correlated with NSCLC patient's survival. Our findings provide evidences for tenovin-3 to be developed into a novel candidate agent for NSCLC with EGFR exon 19 deletion. Our study also suggests that inducing ferroptosis may be a therapeutic strategy for NSCLC with EGFR exon 19 deletion.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptores ErbB/metabolismo , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Inibidores de Proteínas Quinases/farmacologia , Mutação
17.
Sci Rep ; 14(1): 7519, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589490

RESUMO

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias Ovarianas , Piperazinas , Humanos , Feminino , Recombinação Homóloga , Proteína BRCA1/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Antineoplásicos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Poli(ADP-Ribose) Polimerases/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , DNA/uso terapêutico
18.
PLoS One ; 19(4): e0297043, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38564578

RESUMO

The aberrant activation of HER2 has a pivotal role in bone metastasis implantation and progression in several tumor types, including prostate cancer (PC). Trastuzumab and other anti-HER2 therapies, such as lapatinib, have been used in human breast cancer HER2 positive. Although HER2 overexpression has been reported in PC, anti-HER2 therapy response has revealed conflicting results. We investigated the potential of lapatinib in inhibiting cell migration and inducing apoptosis in two human (LNCaP and PC3) and two canine PC cell lines (PC1 and PC2). Cell migration and apoptosis were evaluated by Annexin V/PI analysis after lapatinib treatment. The transcriptome analysis of all cell lines before and after treatment with lapatinib was also performed. We found increased apoptosis and migration inhibition in LNCaP cells (androgen-sensitive cell line), while PC1, PC2, and PC3 cells showed no alterations after the treatment. The transcriptome analysis of LNCaP and PC3 cell lines showed 158 dysregulated transcripts in common, while PC1 and PC2 cell lines presented 82. At the doses of lapatinib used, we observed transcriptional modifications in all cell lines. PI3K/AKT/mTOR pathway were enriched in human PC cells, while canine PC cells showed enrichment of tyrosine kinase antitumor response and HER2-related pathways. In canine PC cells, the apoptosis failed after lapatinib treatment, possibly due to the downregulation of MAPK genes. Prostate cancer cells insensitive to androgens may be resistant to lapatinib through PI3K gene dysregulation. The association of lapatinib with PI3K inhibitors may provide a more effective antitumor response and clinical benefits to PC patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias da Próstata , Masculino , Humanos , Animais , Cães , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Receptor ErbB-2/metabolismo , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Neoplasias da Mama/patologia , Apoptose , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos
19.
Sci Rep ; 14(1): 7733, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565963

RESUMO

B-Myb has received considerable attention for its critical tumorigenic function of supporting DNA repair. However, its modulatory effects on chemotherapy and immunotherapy have rarely been reported in colorectal cancer. Bortezomib (BTZ) is a novel compound with chemotherapeutic and immunotherapeutic effects, but it fails to work in colorectal cancer with high B-Myb expression. The present study was designed to investigate whether B-Myb deletion in colorectal cancer could potentiate the immune efficacy of BTZ against colorectal cancer and to clarify the underlying mechanism. Stable B-Myb knockdown was induced in colorectal cancer cells, which increased apoptosis of the cancer cells relative to the control group in vitro and in vivo. We found that BTZ exhibited more favourable efficacy in B-Myb-defective colorectal cancer cells and tumor-bearing mice. BTZ treatment led to differential expression of genes enriched in the p53 signaling pathway promoted more powerful downstream DNA damage, and arrested cell cycle in B-Myb-defective colorectal cancer. In contrast, recovery of B-Myb in B-Myb-defective colorectal cancer cells abated BTZ-related DNA damage, cell cycle arrest, and anticancer efficacy. Moreover, BTZ promoted DNA damage-associated enhancement of immunogenicity, as indicated by potentiated expression of HMGB1 and HSP90 in B-Myb-defective cells, thereby driving M1 polarization of macrophages. Collectively, B-Myb deletion in colorectal cancer facilitates the immunogenic death of cancer cells, thereby further promoting the immune efficacy of BTZ by amplifying DNA damage. The present work provides an effective molecular target for colorectal cancer immunotherapy with BTZ.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Animais , Camundongos , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular Imunogênica , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Apoptose
20.
Elife ; 122024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578205

RESUMO

Poly(ADP-ribose)ylation or PARylation by PAR polymerase 1 (PARP1) and dePARylation by poly(ADP-ribose) glycohydrolase (PARG) are equally important for the dynamic regulation of DNA damage response. PARG, the most active dePARylation enzyme, is recruited to sites of DNA damage via pADPr-dependent and PCNA-dependent mechanisms. Targeting dePARylation is considered an alternative strategy to overcome PARP inhibitor resistance. However, precisely how dePARylation functions in normal unperturbed cells remains elusive. To address this challenge, we conducted multiple CRISPR screens and revealed that dePARylation of S phase pADPr by PARG is essential for cell viability. Loss of dePARylation activity initially induced S-phase-specific pADPr signaling, which resulted from unligated Okazaki fragments and eventually led to uncontrolled pADPr accumulation and PARP1/2-dependent cytotoxicity. Moreover, we demonstrated that proteins involved in Okazaki fragment ligation and/or base excision repair regulate pADPr signaling and cell death induced by PARG inhibition. In addition, we determined that PARG expression is critical for cellular sensitivity to PARG inhibition. Additionally, we revealed that PARG is essential for cell survival by suppressing pADPr. Collectively, our data not only identify an essential role for PARG in normal proliferating cells but also provide a potential biomarker for the further development of PARG inhibitors in cancer therapy.


Assuntos
Antineoplásicos , Poli Adenosina Difosfato Ribose , Sobrevivência Celular , Fase S , Poli Adenosina Difosfato Ribose/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Antineoplásicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...